Exercise 57

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

$$
f(x)=-2 x^{2}+5 x-8
$$

Solution

In order to more easily graph the quadratic function, write it in vertex form by completing the square. The following algebraic identity is necessary.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Factor the coefficient of x^{2}.

$$
f(x)=-2\left(x^{2}-\frac{5}{2} x+4\right)
$$

Notice that $2 B=-\frac{5}{2}$, which means $B=-\frac{5}{4}$ and $B^{2}=\frac{25}{16}$. Add and subtract $\frac{25}{16}$ within the parentheses and use the identity.

$$
\begin{aligned}
f(x) & =-2\left[\left(x^{2}-\frac{5}{2} x+\frac{25}{16}\right)+4-\frac{25}{16}\right] \\
& =-2\left[\left(x+\left(-\frac{5}{4}\right)\right)^{2}+\frac{39}{16}\right] \\
& =-2\left(x-\frac{5}{4}\right)^{2}-\frac{39}{8}
\end{aligned}
$$

Therefore, the vertex is $\left(\frac{5}{4},-\frac{39}{8}\right)$, and the axis of symmetry is $x=\frac{5}{4}$. To determine the y-intercept, set $x=0$.

$$
f(0)=-2\left(0-\frac{5}{4}\right)^{2}-\frac{39}{8}=-2\left(\frac{25}{16}\right)-\frac{39}{8}=-\frac{64}{8}=-8
$$

Therefore, the y-intercept is $(0,-8)$. To get the x-intercept, set $y=0$ and solve the equation for x.

$$
\begin{gathered}
0=-2\left(x-\frac{5}{4}\right)^{2}-\frac{39}{8} \\
2\left(x-\frac{5}{4}\right)^{2}=-\frac{39}{8} \\
\left(x-\frac{5}{4}\right)^{2}=-\frac{39}{16}
\end{gathered}
$$

Since the square is equal to a negative number, there are no real solutions for x, which means there are no x-intercepts.

A graph of the function is shown below.

